65 research outputs found

    Learning and Testing Variable Partitions

    Get PDF
    Let FF be a multivariate function from a product set Σn\Sigma^n to an Abelian group GG. A kk-partition of FF with cost δ\delta is a partition of the set of variables V\mathbf{V} into kk non-empty subsets (X1,…,Xk)(\mathbf{X}_1, \dots, \mathbf{X}_k) such that F(V)F(\mathbf{V}) is δ\delta-close to F1(X1)+⋯+Fk(Xk)F_1(\mathbf{X}_1)+\dots+F_k(\mathbf{X}_k) for some F1,…,FkF_1, \dots, F_k with respect to a given error metric. We study algorithms for agnostically learning kk partitions and testing kk-partitionability over various groups and error metrics given query access to FF. In particular we show that 1.1. Given a function that has a kk-partition of cost δ\delta, a partition of cost O(kn2)(δ+ϵ)\mathcal{O}(k n^2)(\delta + \epsilon) can be learned in time O~(n2poly(1/ϵ))\tilde{\mathcal{O}}(n^2 \mathrm{poly} (1/\epsilon)) for any ϵ>0\epsilon > 0. In contrast, for k=2k = 2 and n=3n = 3 learning a partition of cost δ+ϵ\delta + \epsilon is NP-hard. 2.2. When FF is real-valued and the error metric is the 2-norm, a 2-partition of cost δ2+ϵ\sqrt{\delta^2 + \epsilon} can be learned in time O~(n5/ϵ2)\tilde{\mathcal{O}}(n^5/\epsilon^2). 3.3. When FF is Zq\mathbb{Z}_q-valued and the error metric is Hamming weight, kk-partitionability is testable with one-sided error and O(kn3/ϵ)\mathcal{O}(kn^3/\epsilon) non-adaptive queries. We also show that even two-sided testers require Ω(n)\Omega(n) queries when k=2k = 2. This work was motivated by reinforcement learning control tasks in which the set of control variables can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that are relatively easier to learn. Our second algorithm empirically increases the scores attained over previous heuristic partitioning methods applied in this context.Comment: Innovations in Theoretical Computer Science (ITCS) 202

    Average-Case Complexity

    Full text link
    We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P≠\neqNP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different ``degrees'' of average-case complexity. We discuss some of these ``hardness amplification'' results

    The Computational Complexity of Estimating Convergence Time

    Full text link
    An important problem in the implementation of Markov Chain Monte Carlo algorithms is to determine the convergence time, or the number of iterations before the chain is close to stationarity. For many Markov chains used in practice this time is not known. Even in cases where the convergence time is known to be polynomial, the theoretical bounds are often too crude to be practical. Thus, practitioners like to carry out some form of statistical analysis in order to assess convergence. This has led to the development of a number of methods known as convergence diagnostics which attempt to diagnose whether the Markov chain is far from stationarity. We study the problem of testing convergence in the following settings and prove that the problem is hard in a computational sense: Given a Markov chain that mixes rapidly, it is hard for Statistical Zero Knowledge (SZK-hard) to distinguish whether starting from a given state, the chain is close to stationarity by time t or far from stationarity at time ct for a constant c. We show the problem is in AM intersect coAM. Second, given a Markov chain that mixes rapidly it is coNP-hard to distinguish whether it is close to stationarity by time t or far from stationarity at time ct for a constant c. The problem is in coAM. Finally, it is PSPACE-complete to distinguish whether the Markov chain is close to stationarity by time t or far from being mixed at time ct for c at least 1

    Small Bias Requires Large Formulas

    Get PDF
    A small-biased function is a randomized function whose distribution of truth-tables is small-biased. We demonstrate that known explicit lower bounds on (1) the size of general Boolean formulas, (2) the size of De Morgan formulas, and (3) correlation against small De Morgan formulas apply to small-biased functions. As a consequence, any strongly explicit small-biased generator is subject to the best-known explicit formula lower bounds in all these models. On the other hand, we give a construction of a small-biased function that is tight with respect to lower bound (1) for the relevant range of parameters. We interpret this construction as a natural-type barrier against substantially stronger lower bounds for general formulas

    Approximate Bounded Indistinguishability

    Get PDF

    Approximate Degree, Secret Sharing, and Concentration Phenomena

    Get PDF
    The epsilon-approximate degree deg~_epsilon(f) of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are: - We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution. - We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg~_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d deg~_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND

    Direct Sum and Partitionability Testing over General Groups

    Get PDF
    • …
    corecore